คลื่นสึนามิ

  • ช่วงชั้น
    3(ม.1-ม.3)
    4(ม.4-ม.6)
  • หน่วยงาน
    วิชาการ.คอม
  • Created
    เสาร์, 05 มิถุนายน 2010
  • Hits
    5923 ครั้ง
  • Created by
    LESA
  • Favourites
    Add to favourites
  • Voting
    (1 vote)
คลื่นผิวน้ำที่เรารู้จักกันทั่วไปเกิดจากแรงลมพัด พลังงานจลน์จากอากาศถูกถ่ายทอดสู่ผิวน้ำทำให้เกิดคลื่น  ขนาดของคลื่นจึงขึ้นอยู่กับความเร็วลม  หากสภาพอากาศไม่ดีมีลมพายุพัด คลื่นก็จะมีขนาดใหญ่ตามไปด้วย  ในสภาพปกติคลื่นในมหาสมุทรจะมีความสูงประมาณ  3 เมตร  แต่เมื่อเกิดลมพายุ คลื่นอาจจะมีความสูงถึง 10 เมตรคลื่นสึนามิ (Tsunami)  เป็นคลื่นขนาดยักษ์ “สึ” เป็นภาษาญี่ปุ่นแปลว่า “ท่าเรือ” นามิ แปลว่า “คลื่น” ที่เป็นเช่นนี้เป็นเพราะ ชาวประมงญี่ปุ่นออกไปหาปลา พอกลับมาก็เห็นคลื่นขนาดยักษ์พัดทำลายชายฝั่ง คลื่นสึนามิไม่ได้เกิดจากการเคลื่อนที่ของอากาศ หากแต่เกิดจากแรงสั่นสะเทือน เช่น ภูเขาไฟระเบิด แผ่นดินไหว ภูเขาใต้ท้องทะเลถล่ม หรืออุกกาบาตพุ่งชนมหาสมุทร แรงสั่นสะเทือนเช่นนี้ทำให้เกิดคลื่นยักษ์ที่มีฐานกว้าง 100 กิโลเมตร แต่สูงเพียง 1 เมตร เคลื่อนที่ด้วยความเร็วประมาณ 700–800 กิโลเมตรต่อชั่วโมง  เมื่อคลื่นเดินทางเข้าใกล้ชายฝั่ง สภาพท้องทะเลที่ตื้นเขินทำให้คลื่นลดความเร็วและอัดตัวจนมีฐานกว้าง 2–3 กิโลเมตร แต่สูงถึง 10–30 เมตร  เมื่อกระทบเข้ากับชายฝั่งจึงทำให้เกิดภัยพิบัติมหาศาล   เพื่อที่จะเข้าใจเรื่องสาเหตุของการเกิดคลื่นสึนามิได้อย่างถ่องแท้  จะต้องศึกษาให้เข้าใจความรู้พื้นฐานดังต่อไปนี้

โครงสร้างภายในของโลก
           โลกที่เราอาศัยอยู่มีขนาดเส้นผ่านศูนย์กลางยาว 12,756 กิโลเมตร (รัศมี 6,378 กิโลเมตร) โครงสร้างภายในของโลกแบ่งออกเป็นชั้นๆ ตามสถานะของวัสดุ (ภาพที่ 1)  ที่ใจกลางของโลกมีอุณหภูมิสูงถึง 5,000°C  แก่นชั้นในเป็นเหล็กร้อนมีสถานะเป็นของแข็ง ส่วนแก่นชั้นนอกเป็นเหล็กหลอมละลายเคลื่อนที่ด้วยการพาความร้อน (convection) ทำให้เกิดสนามแม่เหล็กโลก ถัดขึ้นมาเรียกว่า แมนเทิล เป็นวัสดุเนื้ออ่อน  ส่วนที่อยู่ข้างนอกสุดคือ เปลือกโลก ซึ่งมีอยู่ 2 ชนิด คือ เปลือกทวีป และเปลือกมหาสมุทร ตั้งอยู่บนแมนเทิลชั้นบนสุด เรียกโดยรวมว่า ลิโทสเฟียร์ (Lithosphere) ซึ่งมีสถานะเป็นของแข็ง  ลอยอยู่บนแมนเทิลชั้นบนที่ชื่อว่า แอสทีโนสเฟียร์ (Astenosphere) ซึ่งเป็นวัสดุเนื้ออ่อนเคลื่อนที่ด้วยการพาความร้อน หรือที่รู้จักกันโดยทั่วไปว่า แมกม่า (Magma) ขณะที่แอสทีโนสเฟียร์เคลื่อนที่ไป มันจะพาให้เปลือกโลกซึ่งอยู่ด้านบนเคลื่อนที่ไปด้วย  เมื่อเปลือกโลกเคลื่อนที่ชนกัน ทำให้เกิดแผ่นดินไหว


ภาพที่ 1  โครงสร้างภายในของโลก

การเคลื่อนตัวของเปลือกโลก
           เปลือกโลกมิได้เป็นแผ่นเดียวต่อเนื่องติดกันดังเช่นเปลือกไข่  หากแต่เหมือนเปลือกไข่แตกร้าว มีแผ่นหลายแผ่นเรียงชิดติดกันเรียกว่า “เพลต” (Plate) ซึ่งมีอยู่ประมาณ 20 เพลต เพลตที่มีขนาดใหญ่ ได้แก่ เพลตแปซิฟิก เพลตอเมริกาเหนือ เพลตอเมริกาใต้ เพลตยูเรเซีย เพลตแอฟริกา เพลตอินโด-ออสเตรเลีย และเพลตแอนตาร์กติก เป็นต้น เพลตแปซิฟิกเป็นเพลตที่ใหญ่ที่สุดและไม่มีเปลือกทวีป กินอาณาเขตหนึ่งในสามของพื้นผิวโลก  เพลตทุกเพลตเคลื่อนตัวเปลี่ยนแปลงขนาดและรูปร่างอยู่ตลอดเวลา (ดูภาพที่ 2)


ภาพที่ 2  การเคลื่อนตัวของเพลต

กระบวนการเคลื่อนตัวของเปลือกโลก 
           เพลตประกอบด้วยเปลือกทวีปและเปลือกมหาสมุทรวางตัวอยู่บนแมนเทิลชั้นบนสุด ซึ่งเป็นของแข็งในชั้นลิโทสเฟียร์ ลอยอยู่บนหินหนืดร้อนในชั้นแอสทีโนสเฟียร์อีกทีหนึ่ง หินหนืด (Magma) เป็นวัสดุเนื้ออ่อนเคลื่อนที่หมุนเวียนด้วยการพาความร้อนภายในโลก คล้ายการเคลื่อนตัวของน้ำเดือดในกาต้มน้ำ การเคลื่อนตัวของวัสดุในชั้นแอสทีโนสเฟียร์ทำให้เกิดการเคลื่อนตัวเพลต (ดูภาพที่ 3)  เราเรียกกระบวนการเช่นนี้ว่า “ธรณีแปรสัณฐาน” หรือ “เพลตเทคโทนิคส์” (Plate Tectonics)


ภาพที่ 3  กระบวนการธรณีแปรสัณฐาน

           • หินหนืดในชั้นแอสทีโนสเฟียร์ (Convection cell) ลอยตัวดันพื้นมหาสมุทรขึ้นมากลายเป็น “สันกลางมหาสมุทร” (Mid-ocean ridge)  หินหนืดร้อนหรือแมกม่าซึ่งโผล่ขึ้นมาผลักพื้นมหาสมุทรให้เคลื่อนที่ขยายตัวออกทางข้าง
           • เนื่องจากเปลือกมหาสมุทรมีความหนาแน่นมากกว่าเปลือกทวีป  ดังนั้นเมื่อเปลือกมหาสมุทรชนกับเปลือกทวีป  เปลือกมหาสมุทรจะมุดตัวต่ำลงกลายเป็น “เหวมหาสมุทร” (Trench)  และหลอมละลายในแมนเทิลอีกครั้งหนึ่ง  
           • มวลหินหนืดที่เกิดจากการรีไซเคิลของเปลือกมหาสมุทรที่จมตัวลง เรียกว่า “พลูตอน” (Pluton) มีความหนาแน่นน้อยกว่าเปลือกทวีป จึงลอยตัวแทรกขึ้นมาเป็นแนวภูเขาไฟ เช่น เทือกเขาแอนดีสทางฝั่งตะวันตกของทวีปอเมริกาใต้


ภาพที่ 4  รอยต่อของเพลต

แผ่นดินไหวใต้มหาสมุทร 
           เมื่อเพลตชนกันใต้ท้องท้องมหาสมุทร (ภาพที่ 5 ข.) แผ่นดินที่ยุบตัวลง ทำให้ระดับน้ำทะเลที่อยู่เหนือบริเวณนั้นยุบตามลงไปด้วย  (ค.) น้ำทะเลในบริเวณข้างเคียงไหลเข้ามาแทนที่และปะทะกัน ทำให้เกิดคลื่น (ง.) แรงสั่นสะเทือนทำให้เกิดระลอกคลื่นกระจายออกทุกทิศทาง 


ภาพที่ 5  ขั้นตอนการเกิดคลื่นสึนามิ

           ขณะที่คลื่นยังอยู่เหนือมหาสมุทรที่มีน้ำลึก คลื่นมีขนาดใหญ่มาก มีฐานกว้าง 100 กิโลเมตร แต่สูงเพียง 1 เมตร เคลื่อนที่ด้วยความเร็วประมาณ 700–800 กิโลเมตรต่อชั่วโมง แต่เมื่อคลื่นเดินทางเข้าใกล้ชายฝั่ง สภาพท้องทะเลที่ตื้นเขินทำให้คลื่นลดความเร็วและอัดตัวจนมีฐานกว้าง 2–3 กิโลเมตร แต่สูงถึง 10–30 เมตร  และกระทบเข้ากับชายฝั่ง


ภาพที่ 6  ขนาดของคลื่นสึนามิ

คลื่นสึนามิในประเทศไทย
           จากสถิติที่ประวัติศาสตร์ได้บันทึกไว้ จะมีการเกิดคลื่นสึนามิขนาดใหญ่โดยเฉลี่ยทุกๆ 15–20 ปี   แต่โดยส่วนมากแล้วจะเกิดขึ้นในมหาสมุทรแปซิฟิก เนื่องจากเป็นมหาสมุทรที่ใหญ่ที่สุดในโลก มีอาณาเขตปกคลุมครึ่งหนึ่งของเปลือกโลก จึงมีโอกาสเกิดแผ่นดินไหวได้มากที่สุด คลื่นสึนามิที่มีขนาดใหญ่ที่สุด มีขนาดสูงถึง 35 เมตร ที่เกาะสุมาตรา  เกิดขึ้นจากแรงสั่นสะเทือนจากการระเบิดของภูเขาไฟกรากาตัว เมื่อวันที่ 27 สิงหาคม พ.ศ.2426

           คลื่นสึนามิที่เกิดขึ้นในประเทศไทย เมื่อวันที่ 26 ธันวาคม พ.ศ. 2547  เนื่องจากการเกิดแผ่นดินไหวบริเวณเหวมหาสมุทรซุนดรา (Sundra trench) ซึ่งมีการยุบตัวของพื้นมหาสมุทรตามรอยต่อของเพลตอินเดีย-ออสเตรเลีย และเพลตพม่า ทำให้เกิดแรงสั่นสะเทือน 9.0 ริกเตอร์ โดยมีศูนย์กลางอยู่ทางทิศตะวันตกเฉียงเหนือของเกาะสุมาตรา ในเหตุการณ์นี้มีคนตายทั้งสิ้นมากกว่า 155,000 คน ตามชายฝั่งของมหาสมุทรอินเดีย ในจำนวนนี้เป็นคนไทยไม่น้อยกว่า 5,300 คน


ภาพที่ 7  ตำแหน่งศูนย์กลางการเกิดแผ่นดินไหว

ระบบแจ้งเตือนคลื่นสึนามิ
           เนื่องจากคลื่นสึนามิขณะอยู่กลางทะเลมีฐานกว้างถึง 100 กิโลเมตร แต่สูงเพียง 1 เมตร อีกทั้งยังมีคลื่นทะเลทั่วไปซึ่งเกิดจากกระแสลม อยู่วางซ้อนข้างบนอีก   ดังนั้นการสังเกตการณ์จากเครื่องบิน หรือดาวเทียม จึงแยกแยะไม่ได้เลย  การสังเกตการณ์จึงทำได้จากการตรวจจับสัญญาณจากทุ่นลอย และเครื่องตรวจวัดแผ่นดินไหวเท่านั้น 

           ระบบแจ้งเตือนคลื่นสึนามิระบบแรกของโลกถูกจัดตั้งขึ้นหลังจากอุบัติภัยที่หมู่เกาะฮาวายในปี พ.ศ.2489  สหรัฐอเมริกาจัดตั้ง “ศูนย์แจ้งเตือนคลื่นสึนามิแปซิฟิก” (Pacific Tsunami Warning Center) หรือ PTWC  โดยมีติดตั้งสถานีตรวจวัดแผ่นดินไหวจำนวน 50 แห่ง รอบมหาสมุทรแปซิฟิก ระบบทำงานโดยการตรวจจับคลื่นแรงสั่นสะเทือนจากแผ่นดินไหว  (Seismic wave) ซึ่งเดินทางรวดเร็วกว่าคลื่นสึนามิ 15 เท่า ข้อมูลที่ตรวจวัดได้จากทุกสถานีถูกนำรวมกันเพื่อพยากรณ์หาตำแหน่งที่มีความเป็นไปได้ที่จะเกิดคลื่นสึนามิ  เมื่อคลื่นสึนามิถูกตรวจพบ ระบบจะแจ้งเตือนเมืองที่อยู่ชายฝั่ง รวมทั้งประมาณเวลาสถานการณ์ที่คลื่นจะเข้าถึงชายฝั่ง  เพื่อที่จะอพยพประชาชนไปอยู่ที่สูง  และให้เรือที่จอดอยู่ชายฝั่งเดินทางสู่ท้องทะเลลึกที่ซึ่งคลื่นสึนาส่งไม่ส่งผลกระทบอันใด  อย่างไรก็ตามระบบเตือนภัยนี้สามารถทำการแจ้งเตือนล่วงหน้าเพียงไม่กี่ชั่วโมงเท่านั้น  การอพยพผู้คนมักทำได้ไม่ทันท่วงที เนื่องจากคลื่นสึนามิเดินทางเร็วมาก


ภาพที่ 8  ระบบแจ้งเตือน DART

           DART ย่อมาจาก Deep-ocean Assessment and Reporting of Tsunamis เป็นระบบเตือนภัยยุคใหม่ซึ่งพัฒนาโดย องค์การบริหารบรรยากาศและมหาสมุทร (NOAA) ประเทศสหรัฐอเมริกา โดยการติดตั้งเซนเซอร์วัดแรงสั่นสะเทือนไว้ที่ท้องมหาสมุทร  เซนเซอร์เก็บข้อมูลแผ่นดินไหวและส่งสัญญานไปยังทุ่นลอยซึ่งอยู่บนผิวน้ำ เพื่อรีเลย์สัญญาณไปยังดาวเทียม GOES และส่งกลับลงบนสถานีภาคพื้นอีกทีหนึ่ง  นักวิทยาศาสตร์นำข้อมูลที่ได้มาสร้างแบบจำลองด้วยเครื่องคอมพิวเตอร์ เพื่อพยากรณ์แนวโน้มการเกิดคลื่นสึนามิ  หากผลการจำลองและวิเคราะห์ว่ามีโอกาสความเป็นไปได้จะเกิดคลื่นยักษ์ ก็จะแจ้งเตือนไปยังศูนย์ชายฝั่ง เพื่อให้ประชาชนและชาวประมงในพื้นที่ รีบอพยพจากบริเวณที่อันตราย

 


ขอขอบคุณโครงการการเรียนรู้ในเรื่องวิทยาศาสตร์โลกและดาราศาสตร์
ภายใต้ความร่วมมือระหว่าง LESA โครงการวิจัยโดยหอดูดาวเกิดแก้ว , สำนักงานกองทุนกองทุนสนับสนุนการวิจัย(สกว.),
จุฬาลงกรณ์มหาวิทยาลัย และวิชาการดอทคอม
http://203.114.105.84/virtual/lesa/index1.htm   

 

 

กรูณา login ก่อน แสดงความคิดเห็น